A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
98
THE THEORY OF SCREWS.
[105,
To integrate the equations we assume
• •• Of =fnil',
where...fn are certain constants, which will be determined, and where 11
is an unknown function of the time: introducing also the value of V, given
in § 100, we find for the equations of motion :
Jan
- Mulfl + (-411/1 + -412,/a + • ■ ■ + Aynfn) 12 = 0,
czc
&c.
Jan
- Mun*fn + (A./ + Amfy + ... + Annfn) 12 = 0.
If the quantity s, and the ratios of the n quantities f, ...fn, be deter-
mined by the n equations:—
fi (-411 + Mu(-s‘) +fiAVi + ... = 0,
&c., &c.
fAm +fAnz + ... +fn (-4 mi + Mufs2) = 0;
then the n equations of motion will reduce to the single equation:
By eliminating f,... fn from the n equations, we obtain precisely the
same equation for s2 as that which arose (§ 104) in the determination of the
n harmonic screws. The values of f,... fn, which correspond to any value
of s2, are therefore proportional to the co-ordinates of a harmonic screw.
The equation for Q gives :
!2 = H sin (st + c).
Let Hi, ... Hn, Cj, ... cn be 2n arbitrary constants. Let fpq denote the
value of fq, when the root sp2 has been substituted in the linear equations.
Then by the known theory of linear differential equations*,
0/ =fnHi sin (s,f + cj + ... +fmHn sin (snt + c„),
0/ -finHi sin (Syt + Cj) + ... +f,mHn sin (snt + c„).
In proof of this solution it sufficient to observe, that the values of
0y,... Of satisfy the given differential equations of motion, while they also
contain the requisite number of arbitrary constants.
Lagrange’s Method, Routh, Rigid Dynamics, Vol. I., p. 369.