A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
125] FREEDOM OF THE SECOND ORDER. 113
If we draw a pencil of four lines through a point parallel to four gene-
rators of a cylindroid, the lines forming the pencil will lie in a plane. We
may define the anharmonic ratio of four generators on a cylindroid to be
the anharmonic ratio of the parallel pencil. We shall now prove the follow-
ing theorem :—
The anharmonic ratio of four screws on the impulsive cylindroid is equal
to the anharmonic ratio of the four corresponding screws on the instantaneous
cylindroid.
Before commencing the proof we remark that,
If an impulsive wrench of intensity F acting on the screw X be capable
of producing the unit of twist velocity about A, then an impulsive wrench
of intensity Fa> on X will produce a twist velocity a> about A.
Let Xlt X2, X:l, X4 be four screws on the impulsive cylindroid, the
intensities of the wrenches appropriate to which arc F4a>u F2a>2, .F3w3>
Let the four corresponding instantaneous screws be Alt A2, As, A4, and the
twist velocities be a>2, <a3) ®.,. Let </>„,, bo the angle on the impulsive
cylindroid defining Xm, and let 0,tl. be the angle on the instantaneous
cylindroid defining Am.
If three impulsive wrenches equilibrate, the corresponding twist velocities
neutralize by the second law of motion : hence (§ 14) certain values of
«i, w2> &>3, must, satisfy the following equations:—
_ (l>2 _______&>3
sin (0., — 03) sin (03 — #i) sin (0j — 02)
-A'jWj F.,<O2 __ F__________
sin (</>2 — </>3) sin (</>3 — fa) sin (</>( — </>2)
&>2 _ &>3 ________">l
sin (/( (()- sinOV- ^) ~ sin Ök “ ’
F2(o2 __ F3ms _ FttOf
sm(fa - fa) ~ sin (fa - fa) sin (fa -fa)’
whence
sin (04 — 0..) sin (0-. — 00 _ sin (fa — fa) sin (fa — fa)
sm(0f- 0i) sin(0i - 02) ~ sin (fa3 - fa) sin (fa - fa) ’
which proves the theorem.
If we are given three screws on the impulsive cylindroid, and the
corresponding three screws on the instantaneous cylindroid, the connexion
between every other corresponding pair is, therefore, geometrically deter-
mined.
B.
8