A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
165J THE GEOMETRY OF THE CYLINDROID. 163
The discriminant of the cubic
- All1 + ACIB- BDH + D* = 0
is
AW (AW + BSD + AC3 — 5’T BW -1ABCD).
Omitting the factor A~D~, we have, for the envelope of the system of cones,
the cone of the fourth order, found by equating the expression in the
biacket to zei’o. It may be noted that the same cone is the envelope of
the planes
AH3 + BIB + CII + I) = 0.
165. Application to the Plane Section.
We next study the chord joining a pair of reciprocal points on the cubic
of § 160. Take any point in the plane of the section; then, as we have just
seen, a cone of screws can be drawn through this point, each ray of which
crosses two reciprocal screws. This cone is cut by the plane of section in
two lines, and, accordingly, we see that through any point in the plane of
section two chords can be drawn through a pair of reciprocal points. The
actual situation of these chords is found by drawing a pair of tangents to a
certain hyperbola. This will now be proved.
The values of 0 and 0', which correspond to a pair of reciprocal points,
fulfil the condition
tan 0 tan 0’ = H;
whence,
cos (0 — 0') = X cos (0 + 0');
where, for brevity, we write X. instead of
1+tf
1 — H'
If, further, we make 0 + 0' = yfr, we shall find, for the equation of the chord,
Pa> + Qy+Rz = o;
in which,
^22, 772/ 'TfL
P = -~ (X + cos 2a) -I- sin 2a sin (X + cos 2a) cos 2i/r,
Aa Ai Aa T
i ■ n . m • n rø COS ß „
Q = h sm ß + cos ß sin 2a - (X + cos 2a) sm 2-A
Ai Ai ‘
QTL
+ cos ß sin 2a cos 2i/r,
'772'^ 779^
R = - h° tan ß - — (V - 1) cot ß 4- Xhm sin 2i/r - — (X2 -1) cot ß cos 2->/r.
Aa
11-2