A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
178 the theory of screws. [176-
We see from this that the sum of the reciprocals of the pitches of three
co-reciprocal screws is constant. This theorem will be subsequently
generalised.
177. Locus of the feet of perpendiculars on the generators*.
If p be the pitch of the screw of the three-system which makes angles
a, ß, y with the three principal screws, it is then easy to show that, the
equation of the screw is
(/ > — «) cos a + z cos ß — y cos 7 = 0,
— z cos a + (p — b) cos ß + x cos y = 0,
+ y cos a — æ cos ß + lp - c) cos 7 = 0.
If perpendiculars be let fall from the origin on the several screws of the
system, then if x, y, z be the foot of one of the perpendiculars
x cos a + y cos ß 4- z cos 7 = 0.
Eliminating cos a, cos ß, cos 7 from this equation and the two last of those
above, we have
æ y
-z p-b
+y -x
= o,
or (P-^)(p-c)® + ®(«2 + 2/2 + ^) + ^(&-c) = O;
from this and the two similar equations we have, by elimination of p2 and p
and denoting 4- y* + z2 by r2,
x, (b + c) x, bcx + (b — c)yz + xr2
y, (c + a) y, cay + (c — a) zx + yr2
z, (a + 6) z, abz + (a-b)xy + zr2
= 0;
multiplying the first column by r2 and subtracting it from the last, we have
a?, (b + c) x,
y, (c + a)y,
\ z, (a + b) z,
which may be written
(a - b)2 x2y2 + (b - c)2 y2z2 + (c
bcx + (b — c) yz
cay + (c — a) zx
abz + (a - b) xy
= 0,
'-:t' ' 1 -
- a)2 z2x2 = (a — b)(b — c)(c — a) xyz.
This Article is due to Professor C. Joly, ‘ On the theory of linear vector functions,’ Transac-
twns of the Royal Irish Academy, Vol. xxx. pp. 601 and 617 (1895), where a profound discussion
of Steiner s surface is given. See also by the same author ‘Bishop Law’s Mathematical Prize
Examination,’ Dublin University Examination Papers, 1898.