A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
CONTENTS. XV
CHAPTER XX .
Emanants and Pitch Invariants.
§§ PAGE
260. The Dyname............................................................274
261. Emanants..............................................................275
262. Angle between Two Screws..............................................276
263. Screws at Right Angles................................................276
264. Conditions that Three Screws shall be parallel to a Plane . . . 277
265. Screws on the same Axis...............................................277
266. A General Expression for the Virtual Coefficient......................278
267. Analogy to Orthogonal Transformation ....... 280
268. Pi-operty of the Pitches of Six Co-reciprocals........................282
269. Property of the Pitches of n Co-reciprocals...........................285
270. Theorem as to Signs...................................................285
271. Identical Formulæ in a Co-reciprocal System...........................286
272. Three Pitches Positive and Three Negative.............................287
273. Linear Pitch Invariant Functions......................................287
274. A. Pitch Invariant....................................................289
275. Geometrical meaning...................................................290
276. Screws at Infinity....................................................291
277. Expression for the Pitch .......... 292
278. A System of Emanants which are Pitch Invariants.......................294
CHAPTER XXI
Developments of the Dynamical Theory.
279. Expression for the Kinetic Energy.....................................296
280. Expression for the Twist Velocity.....................................297
281. Conditions to be fulfilled by Two Pairs of Impulsive and Instantaneous Screws 298
282. Conjugate Screws of Inertia...........................................299
283. A Fundamental Theorem .......... 300
Case of a Constrained Rigid Body......................................303
285. Another Proof.........................................................304
286. Twist Velocity acquired by an Impulse.................................305
287. System with Two Degrees of Freedom....................................306
288. A Geometrical Proof...................................................306
289. Construction of Chiastic Homography on the Cylindroid .... 307
290. Hoinographic Systems on Two Cylindroids...............................307
291. Case of Normal Cylindroids............................................308
292. General Conditions of Chiastic Homography.............................309
293. Origin of the Formulæ of § 281........................................310
294. Exception to be noted.................................................312
295. Impulsive and Instantaneous Cylindroids...............................312
296. An Exceptional Case...................................................314
297. Another Extreme Case..................................................316
298. Three Pairs of Correspondents.........................................317