A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
184]
FREEDOM OF THE THIRD ORDER.
185
a1; ...a6; ßx, ... ße', 71,... y6. Then if X, /a, v be three variable parameters,
the co-ordinates of the other screws of the three-system will be
Xai + ^i + rVi, Xa.> + /z/3., + vy2, ••• Xa8 + pß6 + vy6.
We shall denote the pitch of this screw by p, and from § 43 we have for the
equations of this screw with reference to the associated Cartesian axes:
o = + (X«5 + pßs + vy5 + Xa„ + pß6 + vye) y
— (Xa3 + pß3 + vy3 + Xa4 + pßt + vyA) z
— (Xaj + /x/3j + vy, — Xa2 — pß., — i*y2) a
— (X«i + pßi + vy-i + ÅÆ + pß3 + vyp p,
with two similar equations.
From these we eliminate X, p, v and the determinant thus arising admits
of an important reduction.
To effect this we multiply it by the determinant
«1 + a2, «3 + a4, a6 + a6 I.
ßl + ß-2> ßs + ßi> ßs + ßs
| 7i + y2 > ys + 74, 75 + 70
For brevity we introduce the following notation:
P - ® [(Ä + A) (?3 + 74) - (Ä + ßß (?6 + 7e)]
+ y [(Ä + A) (75 + 7s) - {ß-> + &) (yj + v»)]
+ 2 [(A + Ä) (?i + 7a) — {ßl + /3a) (73 + 7a)] >
with similar values for Q and R by cyclical interchange.
We also make
= a (a, + a2) {ß2 -ß.2) + b (a3 + a4) {ß3 - ßt) + c (a, + a6) (ßs - ß6),
Lßa = a{ßi + ß.2) (ax - a.,) + b(ß3 + ßß (a3 - a4) + c {ß5 + ß,) (a6 - a6),
with similar values for Lay, Lya, Lßy, Lyß by cyclical interchange.
The equation to the family of pitch quadrics is then easily seen to be
0 = 1 Pa~p , -P +Laß-pcos{aß), + Q + Lay—peos{ay) .
+ R + Lßa-p cos (aß), Pß-P , -P + Lßy-pcoa(ßy)
\ - Q +Lya-pcos(ay), + P 4- Lyß - p COS {ßy), Py~P
If the three given screws a, ß, y had been co-reciprocal, then as
Laß + Lßa = 2m aß = 0,
it follows that Laß and Lßa only differ in sign, so that if
P' = P + Lyß-, Q’^Q + Lay- R’ = R + Lßa,