A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
202] PLANE REPRESENTATION OF THE THIRD ORDER. 201
We have now to investigate the locus of the screws of given pitch, and as
p is presumed to be a determinate quantity, we have
(pi-p) 0i + z02 -y03 = O,
-z01+(p2- p) 02 + x03 = 0,
+ y01 - x02 + (p3-p) 03 = 0,
whence, by eliminating 0lt 02 , 03 we obtain, as the locus of the screws of
pitch p, the quadric otherwise found in the previous chapter
(pi-p) & + (p3-p) y1 + (p3-p) z2 + (pi-p) (p3-p)(p3 ~p) = 0.
According as p varies, this family of quadrics will exhibit all the screws of
the three-system which possess a definite pitch.
202. Imaginary Screws.
To complete the inventory of the screws it is, however, necessary to
add those of indefinite pitch, i.e. those whose co-ordinates satisfy both the
equations
M2+M2+M2=°>
0* + e.? + e,3 ■= o.
There are four triads of co-ordinates which satisfy these conditions, and,
remembering that only the ratios are concerned, the values of 0lt 02, 03
may be written thus:
+ ( p-2 ~ p3)h, +(p3~Pi)i, + ( pi - P$,
-(Pt-Psft, +(ps-pi)i, +(pi~P2)i,
+ ( P2 - Ptfi, -(p3~pi)h, + (pi~ p2)'2,
+ (p2~p3)i, H-Cl’s-Pl)4, -(Pl-prf-
The equations of the axis written without p are
x (0/ + Øfi) - yØfi. - zØfi3 + (p2 - p3) 0203 = 0,
y (0/ + 0f) — z0..03 - x0.fi, + (p3-pi) 0-fii = 0,
z (0;2 + Øf) - x030, - y0302 + (pi- P2) 0i03 = 0,
of which two are independent.
If we substitute the values of 0,, 02, 03 for the first indeterminate screw,
the thi-ee equations just written reduce to
® (Pi - prf +y(p3-Pi)i + 2(Pi~ -(P-2- P-^ ( P3 ~ P$ ( Pi ~ P^ = °-