A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
FREEDOM OF THE FOURTH ORDER.
231
The co-ordinates of 0 are proportional to
a"'«6 + £%86 + 7"^6 + 3'"86.
As 0 is to be a principal screw of inertia it follows that the expressions
last written multiplied severally by plt ..., p* must be proportional to the
intensities of the impulsive wrenches received by the body : whence we have
the following equations in which h is a quantity which is the same for each
of the co-ordinates.
hpl (a"'«! + + 7wyi + S"^) = a "a, + ß'"ßl + y'"y1 + 8"'81 + X"^ + p'"^,
hp6 (a"'as + ß'"ß6 + y"'ye + 8'"8e) = a"ae + ß”'ß6 + y'"ye + 8"'8e + X'"X8 + p'"ps.
We are now to multiply these equations by au respectively, and
add. If we repeat the process using ßlt ß6; yi, y8; 86;
X1( ...,X6; plt...,ps and if we remember that a is reciprocal to ß, y, 8
because the system is co-reciprocal and that a is reciprocal to X and p
because X and p belong to the reciprocal system, then observing that like
conditions hold for ß, y, and 8, we have the equations
(Xa13-/(:ptt)+iS"'SaA +7"'^aj7i + 6"'2ai8i +X'"Xa1X1 +p"'Xa1p1 =0,
SaA +ß'"(tß1*-hpll) + y"'2ß1y1 + 8/"W1 +X'" XßiXi+p" Xß^p^ = 0,
SaiYi +ß"'Sy1ß1 +yW~ hpj+8"'ty& +xz/ P' "Syi/ij =0,
SaÄ +ß','X81ß1 +7'"S817i +8''\t8^-hps)+X,"t81X1 +/z."'S81^1 =0,
SaAj +ß','Xx1ß1 +y"'ZX1y1 + 8,"X\81 +x""£x? +p =0,
+ß'"'£p1ß1 +y"'lp1y1 + 8'"lpA ■+ x'" Xp1x1+p' "Xpi =0.
From these equations a'", ß"', y'", 8"', X"', p" can be eliminated and the result is to give a biquadratic for h. Thus we have the four roots for the equation. Each of these roots will give a corresponding set of values for a"'; ß"'t ry'", S'", X'", p"; thus we obtain
a"'ai + ß"'ßi + 7/z/Vi + ^i>
a"'a6 + ß"'ß<s + y'+ 3"'é6,
which are proportional to the co-ordinates of the corresponding principal
screw of inertia.
The values of X'" and p" determine the impulsive reaction of the con-
straints.
221. Application of Euler’s Theorem.
It may be of interest to show how the co-ordinates of the instantaneous