A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
236] FREEDOM OF THE FIFTH ORDER. 257
In like manner for the pectenoid relating to 0 and ß, we have
(pe + Pß) M' -k'N’ = 0,
where M' = 0, N’ = 0 also represent planes passing through 0, whence
eliminating pg we have
(— Pß) AIM' — kNM' + k'N'M = 0.
The equation of the pectenoid can also be deduced directly as follows.
Let five screws of the five-system be given. Take a point 0 on one of
these screws (a) and through 0 draw four screws ß, y, 8, e which belong to
the four-system defined by the remaining four screws of the original five.
Let there be any three rectangular axes drawn through 0. Let alt a2, a3 be
the direction cosines of a and let ßlt ß2, ß3 be the direction cosines of ß,
and similarly for y, 8, e. Let 6 be some other screw of the five-system
which passes through 0 and let be its direction cosines, then if
twists of amplitudes a, ß', y', 8', e, 0' neutralize we must have
a' ax + ß'ßi + 7'71 + S'&i + e'ej + 6'6, = 0,
a'a2 + ß’ß3 + y'y2 + O, + e'e2 + 6'62 = 0,
a'a3 + ß'ß3 + y'y3 + 8'83 + e'es + 6'6:1 = 0,
because the rotations neutralize, and also
apacii + ß’pßßi + y’Py'P + S'pA. + ep^ + 6'pe 6r = 0,
a.'paa2 + ß’pßßi + y'PvVs + %pA + e'pee2 + 0'pe02 = 0,
apaa3 + ß'pßß3 + TPtYs + + e'P& + O'Pe^s = °>
whence by elimination of a, ß',... O', we have
ax 7i ei = 0.
a2 ß2 72 e2 6,
a3 ß3 y3 S3 63 03
p««i pßß, pyy2 ps8i pA
Pa«2 Pßßs Pyy-2 PA P^3 PA
paa3 pßß3 pyy3 p$8s p„es pA
This equation has the form
ia+mø2+nø3
LA + M'02 + N'63
Let pe = p-h and 0, = cc + p, 02 = y + p, 03 = z + p then by reduction and
transformation of axes we obtain
pz = ay,
where y and z are planes at right angles and a is constant. This is the
equation of the pectenoid.