A Treatise on the Theory of Screws

Forfatter: Sir Robert Stawell Ball

År: 1900

Forlag: The University Press

Sted: Cambride

Sider: 544

UDK: 531.1

Søgning i bogen

Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.

Derved får du fremhævet ordene visuelt direkte på billedet af siden.

Download PDF

Digitaliseret bog

Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.

Side af 579 Forrige Næste
236] FREEDOM OF THE FIFTH ORDER. 257 In like manner for the pectenoid relating to 0 and ß, we have (pe + Pß) M' -k'N’ = 0, where M' = 0, N’ = 0 also represent planes passing through 0, whence eliminating pg we have (— Pß) AIM' — kNM' + k'N'M = 0. The equation of the pectenoid can also be deduced directly as follows. Let five screws of the five-system be given. Take a point 0 on one of these screws (a) and through 0 draw four screws ß, y, 8, e which belong to the four-system defined by the remaining four screws of the original five. Let there be any three rectangular axes drawn through 0. Let alt a2, a3 be the direction cosines of a and let ßlt ß2, ß3 be the direction cosines of ß, and similarly for y, 8, e. Let 6 be some other screw of the five-system which passes through 0 and let be its direction cosines, then if twists of amplitudes a, ß', y', 8', e, 0' neutralize we must have a' ax + ß'ßi + 7'71 + S'&i + e'ej + 6'6, = 0, a'a2 + ß’ß3 + y'y2 + O, + e'e2 + 6'62 = 0, a'a3 + ß'ß3 + y'y3 + 8'83 + e'es + 6'6:1 = 0, because the rotations neutralize, and also apacii + ß’pßßi + y’Py'P + S'pA. + ep^ + 6'pe 6r = 0, a.'paa2 + ß’pßßi + y'PvVs + %pA + e'pee2 + 0'pe02 = 0, apaa3 + ß'pßß3 + TPtYs + + e'P& + O'Pe^s = °> whence by elimination of a, ß',... O', we have ax 7i ei = 0. a2 ß2 72 e2 6, a3 ß3 y3 S3 63 03 p««i pßß, pyy2 ps8i pA Pa«2 Pßßs Pyy-2 PA P^3 PA paa3 pßß3 pyy3 p$8s p„es pA This equation has the form ia+mø2+nø3 LA + M'02 + N'63 Let pe = p-h and 0, = cc + p, 02 = y + p, 03 = z + p then by reduction and transformation of axes we obtain pz = ay, where y and z are planes at right angles and a is constant. This is the equation of the pectenoid.