A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
260
THE THEORY OF SCREWS.
[239-
If a, b, c be the radii of gyration, then the instantaneous screw cor-
responding to y has for co-ordinates
, Vi % , % Vi . Vs Vs
a a b b c c
The condition that y and its instantaneous screw shall be parallel to a
pair of conjugate diameters of the momental ellipsoid is
a2 (.Vi + %) - + b2 (y3 + %) — ~ + c3 (% - vs) Vs—-~ = 0;
tv 0 c
or 2p1i712=p, = O.
But if the impulsive wrench on 17 be a force, then the pitch of y is zero,
whence the theorem is proved.
240. Theorem.
When an impulsive wrench acting on a free rigid body produces an
instantaneous rotation, the axis of the rotation must be perpendicular to
the impulsive screw.
Let i?!, ... ys be the axis of the rotation, then
%PiVi = 0,
or
a (vi - V2) (Vi + V2) + b (i?3 - t?4) (% + 7/4) + c (% - Vs) (vs + Vs) = 0,
whence the screw of which the co-ordinates are + (iylt — aVz> + bys, ... is
perpendicular to y, and the theorem is proved.
From this theorem, and the last, we infer that, when an impulsive force
acting on a rigid body produces an instantaneous rotation, the direction of
the force, and the axis of the rotation, are parallel to the principal axes of
a section of the momental ellipsoid.
241. Principal Axis.
If 7) be a principal axis of a rigid body, it is required to prove that
^Pi3Vi = 0,
reference being made to the absolute principal screws of inertia.
For in this case a force along a line f) intersecting y, compounded with
a couple in a plane perpendicular to 77, must constitute an impulsive wrench
to which y corresponds as an instantaneous screw, whence we deduce (§ 120),
h and k being the same for each coordinate,
n h dR .
^dy^^’
h dR
Ps dys
+ kp6y6.