A Treatise on the Theory of Screws

Forfatter: Sir Robert Stawell Ball

År: 1900

Forlag: The University Press

Sted: Cambride

Sider: 544

UDK: 531.1

Søgning i bogen

Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.

Derved får du fremhævet ordene visuelt direkte på billedet af siden.

Download PDF

Digitaliseret bog

Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.

Side af 579 Forrige Næste
273] EMANANTS AND PITCH INVARIANTS. 287 If we substitute these values for alt ... an in the expression pa=tp1a^ we obtain the equation 0=p.2 cos2 al cos2 a2 ------ . Pi P* cos2 a6 P« . + 2po cos al ( pT cos al — dal sin al) Pi cos a6 (pe cos a6 — daS sin a6) + P« - 2 + ( p1 cos a 1 — dal sin al)2 ( p6cos a&-dals sin a6)2 Pi P« As al, &c., daj, &c., p{, &c. are independent of pa we must have the three co-efficients of this quadratic in pa severally equal to zero. 272. Three Pitches Positive and Three Negative. The equation cos2 al cos2 a2 cos2 a6 ------■+-------+••. + •-----=0 Pl Pl Ps also shows that three pitches of a set of six co-reciprocals must be positive and three must be negative. For, suppose that the pitches of four of the co-reciprocals had the same sign, and let a be a screw perpendicular to the two remaining co-reciprocals, then the identity just written would reduce to the sum of four positive terms equal to zero. From this formula and also 1 1 —I---- Pi Pi 1 P