A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
274]
EMANANTS AND PITCH INVARIANTS.
289
274. A Pitch Invariant.
Let hlt ... h6 be the direction angles of any ray whatever with regard to
six co-reciprocal screws of reference, then the function
cos A, + ... + a6 cos hs
is a pitch invariant.
For, if we augment the pitch of a by x, we have to write for an... a6
the expressions
a, + cos a, ... cos a(il
2^! %
and then U becomes
a, cos Äj 4-... 4- a6 cos A6
x /cos a, cos A, cos a8 cos hA
2 \ Pi pe )
but from what we have just proved, the coefficient of x is zero, and hence
we see that
a, cos hi + ... + a6 cos
remains unchanged by any alteration in the pitch of a.
If we take three mutually rectangular screws, a, ß, y, then we have the
three pitch invariants
L = 6i cos ai + ... + 0O cos a6,
M = Oi cos bi + ... + 0e cos b6,
N = 6i cos Ci + ... + 6e cos c6.
It is obvious that any linear function of L, M, N, such as
fL + gM+KN,
is a pitch invariant.
We can further show that this is the most general type of linear pitch
invariant.
For the conditions under which the general linear function
• ^i^i + ... + An0n
shall be a pitch invariant are that equations of the type
Acosai ! ^6cosa6_0. &c
Pi P«
shall be satisfied for all possible rays.
Though these equations are infinite in number, yet they are only equi-
valent to three independent equations; in other words, if these equations
are satisfied for three rays, a, b, c, which, for convenience, we may take to
be rectangular, then they are satisfied for every ray.
B. 19