A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
282]
DEVELOPMENTS OF THE DYNAMICAL THEORY.
299
To demonstrate the first of these formulae. Expand the left-hand side and
it becomes
+ —t {(Ä + &) (t/j + %) + (ft + Ä) (% + 7?,) + (& + ße) (v, +%)}
COS ((XT))
+ —7^ {(«! + a2) (ft + + («3 + a<) (ft + + («5 + a<>) (& + ft)}.
COS ( p )
But, as already shown,
'Pa 'Pa
---5----r = + CWtj, ? V2 = - aa2, ■■■,
cos (ay)--------------------------cos (ay)
- ~77m & = - a&> ■ • • ’
cos(/3f) cos(/3£)
whence, by substitution, the expression reduces to
+ a (ß, + ß,2) (ax - a2) + a (ax + a2) (& - ß2)
+ b(ß3 + ßi) (a3 - a4) + 6 (a3 + a4) (ß3 - ßt)
+ c(ß6 + ße) (as - a6) + c (a6 + a6) (ßs - ße)
— 2aa4ß4 — 2aa,2ß.2 + 2ba3ß3 — 2ba4ß4 + 2ca6/3B - 2ca3ß6
= 2-ara(3.
To prove the second formula it is only necessary to note that each side
reduces to
+ a?a$4 + (Pa..ß., + b"a3ß3 + bsa4ß4 + c'XA + c2a6ße.
It will be observed that these two theorems are quite independent of the
particular screws of reference which have been chosen.
282. Conjugate Screws of Inertia.
We have already made much use of the important principle that is
implied in the existence of conjugate screws of inertia. If a be reciprocal
to £ then must y be reciprocal to ß. This theorem implied the existence
of some formula connecting and •srj3l). We see this formula to be
_ Pa _ Pß
cos (ay) cos (ߣ)
We have now to show that if = 0, then must = 0.
Let us endeavour to satisfy this equation when ^ßri is zero otherwise
than by making zero. Let us make pa infinite, then will reduce
to cos (a£) (for we may exclude the case in which p% is also infinite
because in that case = 0, inasmuch as any two screws of infinite pitch
are necessarily reciprocal).