A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
318
THE THEORY OF SCREWS.
[298,
Let
Po'/’l — a@l = -3^1;
Pe'/’s ~ b03 = Äs,
Pe(t>s~ cds = Xs>
Pecl)2 4" ^^2 — X3f
Pe^i + ^4 = Xit
pe<ps + C0S = Xs,
and the equation becomes
0 = («, + as) (X, + X,) + (a, + a4) (X3 + X4) + (a6 + a6) (X, + X6);
and the two other L equations give
° = (Ä + Ä) (X3 + Z2) + (ß3 + ft) (X3 + Z4) + (ft + Ä) (X5 + X8),
0 = (yj + y2) (X-L + Za) + (y3 + y4) (X3 + Z4) + (y6 + 76) (X5 + Xs).
It we eliminate X3+X3, X3 + X4, Xs + Xe from these equations, we
should have
0 =
oti + a2
Ä+/3,
71 +
a3+ a4
Ä + Ä
Va+ 7t
a5+ a6
ßs + ße
7i + Vs
But this would only be the case if a, ß, 7 were parallel to a plane, which is
not generally true. Therefore, we can only satisfy these equations, under
ordinary circumstances, by the assumption
JTj 4- X3 = 0, X3 + X4 = 0, Xs + Xs = 0.
In like manner, the equations of the M type give
Pø^a<f> PoL^Ør] 0>
Pe^ßt — Pß^el — 0>
— Py^ei — 0.
Substituting, in the first of these, we get
+ Pe (««101 — aa2</>2 + 6a3</>3 — 6a4^>4 + ca5</>5 — ca6</>6),
— pa (ayidi - at)302 + bT]303 — byjiOt + - erlös') = 0;
which reduces to
aajJTi — a«sJT2 4- ba3X3 — &a4X4 + ca3X3 — ca3Xe = 0;
but we have already seen that Xj + 2l2 = 0, &c., whence we obtain
XT (aa. + aa2) + X3 (ba3 + 6a4) + X3 (ca5 + ca6) = 0;
with the similar equations
Xt (aß, + aß2) + X3 (bß3 + bß4) + X5 (eßs + eße) = 0,
((171 + ay3) + X3 (by3 + by4) + X6 (cy5 + cy6) — 0.
These prove that, unless a, ß, y be parallel to a plane, we must have