A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
356 the theory of screws. [325-
325. A Differential Equation satisfied by the Kinetic Energy.
If the pitch p of the screw 0 about which a body is twisting receive a
small increment tip while the twist velocity 0 is unaltered the change in
kinetic energy is
MpSpØ2.
But the addition of bp to p has the effect (§ 264) of changing each canonical
co-ordinate 04 into
*+$
The variation thus arising in the kinetic energy equated to that already
found gives the following differential equation which must be satisfied by w/,
a - 0f + b (0S* - 0/) + c - 0f
— _ duf , &3 + &4 Cdue2 _ duf 0&+ 06 (due2 duf
2« W6»! døj 2b \d03 døj+~2i \d05~døj'
If we assume that ue2 must be a rational homogeneous function of the
second order in 0,,... 06 we can, by solution of this equation, obtain the
value of wa2 given in the last Article.
326. Co-ordinates of Impulsive Screw in terms of the Instan-
taneous Screw.
If a3 be the canonical co-ordinates of an instantaneous screw and
Vi> ■■■ Vi> the corresponding co-ordinates of the impulsive screw, then we have
(§ 99),
1 duf
eV1 = -
a da4
and we obtain the following:
+ eap = (+ pi2 + a2)
1 duf 0
ep2 =------, &c.,
a da2
a2) a2 + (az,, - bz0 - If a3
+ («z0 + bz0 — If a4 + (— ay3 + cya - If a5 + (— ay0 — cy0 - If a6
- eay2 = (+ pf - of a4 (+ pf + a2) a2 + (- az0 — bz0 - If a3
(- az0 + bz0 — If a4 + (+ ay0 + cy„ — If a5 + (+ ay0 — cy0 — If a,;
(+ p22 + b2) a3
+ ebr/3 = (+ az0 - bz0 - If + (- az0
(+ P? ~ &2) a4 + (+ bæa — cxl} — If as + (bx0 + rø0 — If ae
~ eby4 = (+ az„ + bz„ - If + (- az<1 + bzQ - If a2 (+ p.2 - b2) a3
(+ P22 ■+ &2) a4 + (- bæ0 — cæ0 — If a6 + (- bæ0 + cx0 — If «6
+ ecy5 = (— ay0 + cy0 — If a4 + (+ ay3 + cy0 — If a2 + (+ bæ0 — cx0 — If a3
(— bx0 — cx0 — If a4 + (+ p32 4- c2) a5 (+ p32 — f a6
— ecpg — (— ay3 — cy0 — If a4 + (a,y0 — cy0 — If a2 + (+ bæ3 + cæa — If a3
(— bx0 + c«0 — If a4 + (4- p32 — c2) as _|_ (pt