A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
362
THE THEORY OF SCREWS.
[333,
will have
(§ 326)
its corresponding impulsive screw
defined by the equations
+ eary = p2 + a2 ; — eay2 =
+ ebys = azn - bz3 - (2; - ebyt =
+ ec% = cy0 - ay0 - l22; - ecye = - ay0- cy3 -122.
By substituting these in the equations just given, we obtain
pi ~ a2;
az3 + bz3 -l32;
az0 - bza -I»
a2 - pi2
a
b
a
2
— az0 - bz0 + l32
al±Pl+B’
a
a2 - Pi3
a
cy0 - ay0 - l-2
a1 ~ Pi
a
aP + pi2 , B„
a
c
ay^ + cy„ -4-I?
aa - Pi
a
a
c
In like manner from the screw on U
0, 0, 1,
0, 0, 0
we obtain
+ a-j/j = az0 - bz0 - l32;
+ bys = pi + ;
- cry = bx„ - cx0 — I2;
- ay2 = — az3 — bz0 - l3;
- byt = p2 - b2;
- c-rf = bx0 + C«o — I2.
for ->), we
Introducing these into the equations
azy-bzy-ls2 B
have
&+ps_A
b ~A
az0 + bz3 4-12
a
b‘‘~P2--A'
b ~A
(izq • bzü l32
a
„ az0 + bz0 + li2
a
— cx0
c
aza — bz0 —ls2
+ B‘
a
az,, + bz0 + ls2
a
a
— bx„ — cXf, + (2
c
(iZq bz0 l32 (izq 4- bZfi -f~ l3
a a
Thus we have eight equations while there are nine co-ordinates of the
rigid body. This ambiguity was, however, to be expected because, as proved
in § 306, there is a singly infinite number of rigid bodies which stand to the
two cylindroids in the desired relation.
The equations, however, contain one short of the total number of co-
ordinates ; æ0, y0, zQ, (2, I.2, l32, p2, p2 are all present but p2 is absent.