A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
378]
THE THEORY OF PERMANENT SCREWS.
415
a — 62) + Y(ßs + ö6) — Z (03 + 04),
b(é3-éi) + z (é1 + é3)-x^r, + ø3),
C(ø5-ø8) + X(& + ø4)- Y(é1 + é2).
Before substitution for X, Y, Z it will be convenient to use certain abbre-
viations,
0i — 02 = 61; — 03 = Pl > 01 + 0'2 — \1, 01 + 02 = >
0S' — Ø4 = e2; Ø3 — Ø4 = p2~, Ø3 + Ø4 = Ø3 + Ø4 = "a,
0/-06' = e3; 05-06 = Psi 0s' + 06=K, 0s + 06=a>3.
With these substitutions in v2 the square of the velocity of the element we
readily obtain after integration and a few reductions and taking the total
mass as unity,
%fv2dm = a20i2 + dß.2 + b202 + b202 + c2052 + c-Ø.r
+ abe2piws — ace3pi<i>2 — Xi®2®3 (&2 — c2)
+ bce3p2Wi - baeip2a>s — \m3^i (c2 — a2)
+ caeip3m.2 - cbe2p3coi — X3a>i(o2 (a? — ft2),
whence we easily find
dT
d0i'
= + acp3a>2 — abp:M.. — (b2 — c2) ®2®s-
If 7)1', ...7)” be the co-ordinates of the restraining wrench, then, as shown
in S 368,
A_dT
V1 ~ Pi dør
whence we deduce the following fundamental expressions for the co-
ordinates of the restraining wrench :—
Piv” — — acpa^i + abp2a)3 + (b2 — c2) ft>2ö>3>
P2V2' = + acp-iO>2 ~ abp2w3 + (b2 - c2) a)2a>3,
P-iVs' = — od>pi<i>3 + cbp3a>i + (c2 — a2) ö>sWi,
Pt")" = + abpiw3 — cbp3(i>i + (ca — a2) ®3«i >
PiV" = ~ bcp2(Oi + acpio)2 + (a2 — b2) ö>j®2,
PhVs" = + bcp3wi - acpiw2 + (a2 - b2)
As usual, we here write for symmetry
p1 = -2ra-, p3 — — a', p3 = + b-, Pt = — b; p3 = + c; p3 = -c.
We verify at once that
PiVi'Øi + ■ • • PtV^Øa = 0,
but this is of course known otherwise to be true, because the restraining
screw must be reciprocal to the instantaneous screw.