A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
418
THE THEORY OF SCREWS.
[381-
The equations to the axis of the screw are
«Pi + ya>3 — zm, _ bp2 + za^ — xm. _ cp3 + ®co2 — ya^
®i a>2 a>3
If x, y, z are all simultaneously zero, then
Q'Pi bp2 ops
®i *), w3 ’
and these are, accordingly, the conditions that the instantaneous screw passes
through the centre of gravity.
With these substitutions the co-ordinates become
Pi’?/'= (&2 — c2) ®2w3; paVs" = (c2 - a2) aw, psV” = (a2 - b2) a>1Cl>2,
P2V2" = (b2 - C2) ®2®s; p4y" = (c2 - a2) «..«j; peV= (a2 - b2) &>10>2;
remembering that p1 = + a; p2 = - a, &c., we have
%" + %"= 0; %" + ^/'=0; <+j?" = 0;
but these are the conditions that the pitch of ?, shall be infinite; in other
words the restraining wrench is a couple, as should obviously be the case.
From the equations already given, we can find the co-ordinates of the
instantaneous screw in terms of those of the restraining screw.
We have
/ abc (y" - y2") (y3" - Vi") (Vs" - Vfs")
V 2 (b2 — c2) (c2 — a2) (a2 — b2)
, TT b2— c2
and W1 = H-.-„---- ;
«hh - % )
c2 — a2
w- b(V3"-Vi"y
a>3 = H
If we make
a2-b2
C (vs' ~ Vs") ’
LO2 = ato,2 + ba2 + ca>32, h302 = apax2 + b3w22 + c3<a32,
then we have
0^ =
‘Pi + pe La2 - h3\
< 2p, 2,abc ) ’
02 = (O1
'P2 +Pe _ La2-h3\
< 2p2 2abc J ’
a _ (Pz+Pe ,
“3 — Ö>2 I 5--1-
V 2ps
Lb2 - h3\
2abc )
'Pt + Pe Lb2 — h3\
< 2p4 2abc ) ’
04 = tu2
a fPs+Pe Lc2 — h3'
0s = w3- +........a ,
\ 2j>5 2abc ,
0« = ö>3
Ps + Pe
< %Ps
Lc2 - h3\
2abc ) ’
In these expressions, pe is the pitch of 0, and is, of course, an indeterminate
quantity.
382. Remark on the General Case.
If the freedom of a body be restricted, then any screw will be permanent,
provided its restraining screw belong to the reciprocal »system. For the body