A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
___________
_______ _____________
________ _____
440
THE THEORY OF SCREWS. [400,
The intervene itself is F (O'), where F expresses some function; and,
accordingly,
When we substitute in this expression the value of 0 given above, we have
an identity which is quite independent of the particular 8. We must, there-
fore, determine the functions so that this equation shall remain true for all
values of X, and all values of p. The formulae must therefore be true when
differentiated—
dO _ (p - A/)» - V) dØ _ (X - X')(X" - X.)
dK (p - X)2
,,, > dFdO
dp (p — X)2
,,, , dF d0
__________
whence,
^(x) = O ~ *■')(/* ~ X")
</>'(#) (X - X')(X - X") ’
(X — X )(X — X ) </> (X) = (p — X')(/4 — X") </> (//.),
or
which has the form
or,
ir(x) = y/r (p).
Considering the complete independence of both X and p, this equation re-
quires that each of its members be independent alike of X and p. We shall
denote them by H (X' — X") where H is a constant, whence
(X - X')(X - X") </>'(X) = H(X' - X"),
_______________
d>'(x) =.....
’ (X-V)(X-X")
_u( 1____________1_\.
\x - x' x - x'7 ’
whence, integrating and denoting the arbitrary constant by C,
4>(F) = H [log (X - X') - log (X - X")] + C;
similarly,
<!>(p)^H [log (p - X') - log (p - X")] + C;
and, finally, we have for the intervene, or </> (X) - </> (p), the expression,
8 = H log (x~ x')
This expression discloses the intervene as the logarithm of a certain an-
harmonic ratio.
We may here note how a difficulty must be removed which is very
likely to occur to one who is approaching the non-Euclidian geometry for the