A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
458
THE THEORY OF SCREWS.
[417
We thus get
Hp1p2p3p4X1 — X1 x2 «3 x4 11 12 13 14
Xj x2 •21 22 23 24
x2" Xi" 31 32 33 34
x"" x2" ®3"" 41 42 43 44
= P2X1
y-3, p2^2
y-3, p2 ^3
Vi, p2^4
or HP1X^ yi
x-['
x("
x('"
But these determinants
tetrahedron
are the co-ordinates
, and omitting needless factors
/W", piOO,"''
pax."', p4x2""
Ps^s ) p4^3
p3^"', P4<"
y* ys V4
X2 00$ x±
x$ x±
™ 'Ht 1111 >'ll
^2 00$ 00^
of y referred to the new
1^1 Pl^l> 1 2 — p2-^2> 1^3 — Ps-^31 1'1 — p4^~4’
We thus obtain the following theorem.
Let a\, x2, xs, x4 be the co-ordinates of a point with respect to any arbitrary
tetrahedron of reference.
Let 2/i> 2/a, y3, 2/4 be the co-ordinates of the corresponding point in a
homographic system defined by the equations
2/1 — (11) æi + (12) x2 + (13) x3 + (14) a?4,
y2 = (21) «J 4- (22) x2 + (23) x3 + (24) x4,
y3 = (31) + (32) x2 + (33) x3 + (34) x4,
2/4 = (41) x4 + (42) x2 + (43) x3 + (44)
If we transform the tetrahedron of reference to the four double points of
the homography, and if Xlt X2, X3, X4 be the co-ordinates of any point
with regard to this new tetrahedron then the co-ordinates of its homographic
correspondent are
p1^-2> p3-^-3> Pi^4>
where plt p2, p3, p4 are the four roots of the equation,
(11) -p (12) (13) (14) = 0.
(21) (22) -p (23) (24)
(31) (32) (33) -p (34)
(41) (42) (43) (44) — p