A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
474
THE THEORY OF SCREWS.
[427,
and, from the second vector,
= 4- ay. + ß'y2 + y'ys + S'y4,
Zz = ~ ß'yi + a'y2 + 8’y3 - y'y„
z3 = - yy.- + ay3 + ß'yt,
Zi = - 8'y. + yy3-ß'y3 + a'y,.
Substituting for y., y.2, y3, yit we obtain the following values for z., z2, z3, zt.
The right vector, a, ß, y, 8, followed by the right vector, a, ß', y, 8'—
z1= + aa' - ßß' - yy' - 33' xT + + aß' + ßa' + yd' - Sy' x2 + ay' - ß8' + ya + 8ß' x3 + + ct3z + ßy' - yß' + 8a x4,
z2 — — aß' ~ ßa' ~ yd' + dy' x±+ + aa' - ßß' - yy - 88' x2 + aS' + ßy' - yß' + 8a' x3 H— ay' + ß8' - ya' - 8ß' x4,
z3= - ay' 4- ß8' - ya' - 8ß'xT H— a8' - ßy' + yß' - 8a'x,2 + aa' — ßß' - yy' - 88' x3 + 4- aß' + ßa' + yd' - 8y' x4,
z4— - aS' - ßy' + yß' - 8a'x^ + 4- ay' - ßS' + ya' 4- 8ß'x2 4— aß' - ßa' - y8' + 8y' x3 + + aa' - ßß' - yy' - 88' x4.
The right vector, a', ß', y', 8', followed by the right vector, a, ß, y, 8—
z4 = 4- aa' - ßß' - yy' - 88' x4 + + aß' + ßa - y8' + 8y' x2 + + ay' + ß8' + ya' - 8ß' #3 + + aS' - ßy' + yß' + da' x4,
z2= - aß' - ßa + y8' - 8y' + + aa' - ßß' - yy' - 88'x2 + + a8' - ßy' + yß' + da' x3H— ay' — ß8' - ya' 4- 8ß' x4i
z3= - ay' - 8ß' - ya' + 8ß'x1 H— aS' + ßy' - yß' -8a' x2 + + aa' - ßß' - yy' - 88'x3 4- + aß' + ßa' - yS'4- Sy' x4i
z4= - a8' 4-ßy' — yß' - 8a' x4 + + ay' + ßS' + 7a - Sß' x2-i— aß' - ßa' + yS' - 8y' x3 + + aa' - ßß' - yy' - 88' x4.
We thus learn the important truth, that when two or more homonymous
vectors are compounded, the order of their application must be carefully
specified. For example, if the object æ be first transposed by the vector a.
and then by a!, it attains a position different from that it would have gained
if first transposed by a! and then by a.
We see, however, that in either case two homonymous vectors compound
into a vector homonymous with the two components.
We now study two heteronymous vectors, i.e. one right and one left.
The right vector, a, ß, y, 8, followed by the left vector, a', ß', y', 8'—
z1 = 4- aa' - ßß' - yy' - 88' + + aß' + ßa' 4- y8' - 8y' x2 + + cry' - ß8' + ya' + 8ß' x3 + + aS' + ßy' - yß' 4- 8a x4,
z2= — aß' - ßa' + y8' - 8y'x14- + aa' - ßß' 4- yy' + 88' x2 4— aS' — ßy' - yß' + 8a'x3 + + ay' - ß8' - ya' - 8ß' x4i
z3— - ay' — ß8' - ya' + 8ß'3^+4- aS' - ß8' - yß' - 8a' x2+ + aa’ 4- ßß' - yy' + 88'x3-\— aß' + ßa' - y8' - 8y' x4i
z4= - a8' + ßy' - yß' - 8a'x4 4— ay' - ß8' + ya' - 8ß' x2 + + aß' - ßa' - yb' - 8y' x3 + + aa' + ßß' + yy' - 88' x4.
The left vector, a', ß', y', 8', followed by the right vector, a, ß, y, 3—
z4 = 4- aa' - ßß' - yy' - 88' x4 + 4 aß' + ßa' + yS' - 8y' x2 + + ay' - ß8' + ya' 4- 8ß' x3 + + aS' + ßy' - yß' + 8a' x4i
z2~ - aß' — ßa +y8' - 8y' ^+4- aa' - ßß' + yy' -f 53'— a8' - ßy' - yß' + 8a x3 + +ay' - ß8' - ya' - 8ß' x4i
z3= - ay' - ß8' - ya' + 8ß' ^ + + aS' - ßy' - yß' - 8a' x2 + + aa' + ßß? - yy' + 88' x3 H— aß' 4- ßa' - y8’ - 8y' x4,
z4— — a8' + ßy' - yß' - 8a' ^4- - ay' - ß8' + ya' - 8ß'x2+ +aß' - ßa' - y8' - Sy1 x3 + +aa' + ßß' + yy' - 88'x4.