A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
528
THE THEORY OF SCREWS.
Buchheim (A.)—On the Theory of Screws in Elliptic Space. Proceedings of the
London Math. Soc., Vol. xiv., p. 83; Vol. xvi., p. 15; Vol. xvii., p. 240;
Vol. xviii., p. 88.
In these papers the methods of the Ausdehnungslehre of Grassmann have been
applied to the Biquaternions of Clifford. Reference should also be made to another
paper by the same author, “A Memoir on Biquaternions.’’ (American Journal of
Mathematics, Vol. vii., No. 4, p. 23, 1884.) If A, B be two biquaternions they
determine a linear singly infinite series of biquaternions XA + yB when Å, p are
scalars : this set is called a cylindroid, so that if C is any biquaternion of the
cylindroid A, B we have C = Å.A + pß. A remarkable investigation of the
equation to this surface in elliptic space is given, and a generalization of the plane
representation of the cylindroid is shown. In these writings it is the methods
employed that are chiefly noticeable. We find however much more than is implied
by the modest disclaimer of the lamented writer, who in the last letter I had from
him says, “I have been but slaying the slain, i. e. discovering over again results
obtained by you and Clifford.”
Segre (0.)—Sur une expression nouvelle du moment mutuel de deux complexes
linéaires. Kronecker’s Journal, pp. 169-172 (1885).
A remarkable form for the expression of the virtual coefficient of two screws on
a cylindroid is given in this paper. Translated into the terminology of the present
volume we can investigate Segre’s theorem as follows.
Let two screws on the cylindroid make angles 0, <f>, with one of the principal
screws, while the zero pitch screws make angles + a, — a. Let p be the anharmonic
ratio of the pencil parallel to these foui’ screws so that
sin (Ö — a) sin (</> + a)
sin (0 + a) ’ sin (</> — a) ’
Then as usual
Pe - Po. + m cos 2Ö,
o =p0 + m cos 2a;
whence
pe = 2 m sin (a — 6) sin (a + 0),
p,(, = 2m sin (a — </>) sin (a + f);
whence
4m2 sin2 (0 — a) sin2 (</> + a) - ppep<p
Thus
2 m sin (0 - a) sin (</> + a) = Jp Jpep^,
2 m sin (0 + a) sin (</> - a) = Jp~' Jp^ ;
adding, we easily obtain
= i (Jp + Vp-1) JPeP*-
If therefore we make
P — ®21'>
we have as the result Segre’s theorem that
^Jps'JN cos e-
D’Emilio (R).—Gli assoidi nella statica e nella cinematica. Nota su la teoria delle
dinami. Atti del Reale Istituto Veneto di scienze, (6) iii. 1135-1154
(1885).
This is an account of the fundamental laws of the different screw-systems.