A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
_______
________
_____ ________
SCREW CO-ORDINATES.
________________________________________________________
44]
____
____
39
we have
similarly
we thus find
2<ta1 = ( a+/>«)X" ——«'"y),
- 2aa2 - (- a + pa) X" - (p'z' — v"y'\
X" = aj + a.,; v"y'- pz' = a(a\ — a2)-pa(a, 4- a2).
In like manner we obtain two similar pairs of equations for the required
equations of the screw a,
(a-, + ?«) y - (a3 + a,) z = a (sq - a,) - p« (a, + a2), '
(a, + a3) z - (a6 + a„) x = b («3 - a4) - pa (a3 + at), -
(a, + a4) x — (a, + a2) y = c (a5 - ab) — j»o (a5 + a6).
....... (i)-
The expressions on the right-hand side of these equations are the co-
ordinates of the extremity of a vector from the origin of length equal to
the perpendicular distance of a from the centre, and normal to the plane
containing both a and the origin.
The co-ordinates of the foot of the perpendicular from the origin on the
screw a are easily shown to be
x - (as - a„) (a3 + a4) c - (a5 + a«) (a» - a4) b,
y={ocl- a3) («6 + a«) a - (a, + a3) (a5 - ct6) c,
z = (a3 - a,) (a, 4- a,) b - (a3 + a4) (a, - a3) a.
44. A Screw of Infinite Pitch.
The conception of the screw co-ord.ina.tcs hs defined in § 4*1 require special
consideration in the case oi a screw of infinite pitch. Consider a wrench on
such a screw. If the intensity of the wrench be one unit, thou the
moment of the couple which forms part of the wrench is infinite. Ah the
pitches of the screws of reference or any of those pitches are not in general
to be infinite, it follows that the wrench of unit intensity on a screw of
infinite pitch must have for its components on one or more of the screws of
reference wrenches of infinite intensity.
If therefore an a2, ... a6 be the co-ordinates of a wrench of infinite pitch,
it is essential that one or more of the quantities a1; a.,, ... a6 shall be
infinite.
In the case where the screws of reference form a canonical system we can
obtain the co-ordinates as follows:
< (V. + a) cos (al) - (41 sin (al). _ _ (pa - a) cos (al) - sin (al)
«> = ------------2cT ’ 2 " ’ - 2a