A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
42
THE THEORY Öl’ SCREWS.
[47-
Introducing the values just given for to this equation becomes
(«5 + O y - (a3 + a4) z = a (a, - a3) - + a2),
as of course it ought to do, for the pitch is immaterial when the question is
only as to the situation of the screw.
48. Transformation of Screw-co-ordinates.
Let «i...a6 be the co-ordinates of a screw which we shall call to, with
reference to a canonical system of screws of reference with pitches + a and
— a on an axis OX; + b and — b on an intersecting perpendicular axis OY,
and + c and - c on the intersecting axis OZ which is perpendicular to both
OX and OY.
Let x„, y„, zn be the co-ordinates of any point O' with reference to the
associated system of Cartesians.
Draw through O' a system of rectangular axes O'X', O'Y', O'Z' parallel to
the original system OX, 0 Y, OZ.
Let a new system of canonical screws of reference be arranged with pitches
+ a and - a on O'X', + b and - b on O'Y', and + c and - c on O'Z’.
Let 03, 0.,... 06 be the co-ordinates of the screw to with regard to these
new screws of reference. It is required to tind these quantities in terms of
an ... «6,
Let x, y, z’ be the current co-ordinates of a point on to referred to the
new axes, the co-ordinates of this point with respect to the old axes being
y, z,
then » = »' + «„; y=y' + y9-, z = z' + z„.
The equations of co with respect to the new axes are (§ 43),
( ^5 + 67) y' —(0.1+ 07) Y — a (0, — 0.7) — (0! + 0j) j
( 01 + 03)Y - (0S + ØJ x = b(03-0i)-pa(0i + 0i)- ..... (i).
( ^3 + 67) x — (0i + 0-7) y' = c (05- 07) - pa (0,. + øe)i
We have also
( a5 + a6) y - (a3 + a4) z = a (a^ - a2) -jpw (a, + a2))
(otj + a.,) z — (a5 + a6) x = b (a3 — a,) — pm (a3 + a4); . (ii).
(a3 + a4) x - (a, + a3) y = c (a5 - a6) - pu (a5 + a6)J
Remembering that the new axes are parallel to the original axes we have
— “i + a3; #3 + 04 = a3 + «4; Ö5 + ö6 = aä + a6.(iii).