Pristeorier
En Statistisk Undersøgelse over Forholdet mellem Pris og Efterspørgsel
Forfatter: Edv. Ph. Mackeprang
År: 1906
Forlag: Fr. Bagges Kgl. Hof-bogtrykkeri
Sted: København
Sider: 104
UDK: 338.5 Mac
Nærværende Afhandling er af de statsvidenskabelige Profes-
sorer ved Kjøbenhavns Universitet funden værdig til offentlig at
forsvares for Doktorgraden i Statsvidenskab.
Kjøbenhavn, d. 7. Februar 1906
H. Matzen, h. a. dec. fac.
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
42
§ 52. Nogle aar før Say var den bekendte matematiske økonom
Cournot1) fremkommet med en grafisk fremstilling af efterspørgsels-
kurverne, den første, der kendes. Han benytter sig af den nu sæd-
vanlige form, hvor prisen afsættes ud ad abscisseaxen og forbruget
(antallet af forbrugte mængdeenheder) ud ad ordinataxen (jfr. § 54).
Hertil knyttes en række lødige bemærkninger: „Prisen stiger ikke i
ligefremt forhold, som efterspørgslen synker. Naar man taler om
den efterspurgte mængde, maa man tilføje til hvilken pris. Gen-
stande, hvis efterspørgsel beror paa deres sjældenhed, danner und-
tagelser fra regelen om, at efterspørgsel og pris varierer omvendt;
bliver diamanter almindelige, vil saavel pris som efterspørgsel synke,
prisen paa violiner kan falde til det halve, uden at efterspørgslen
forøges, ti de, der skal bruge violiner, tager ikke hensyn til prisen;
omvendt kan brændselsprisen stige til det dobbelte, uden at efter-
spørgslen bliver mindre“.
§ 53. Den næste, der benytter en grafisk fremstilling, er fransk-
manden Dupuit, kendt som en af de første grænsenytteteoretikere;
allerede hos ham finder man den senere saa hyppige fejl: antagelsen
af grænsenyttekurvens og efterspørgselskurvens identitet, jfr. § 35,1.
I den danske økonomiske litteratur findes denne fejl hos Lauritz
V. Birck1), der mener, at „det enkelte individ vil (da) have en pris-
række, der løber parallel med nytterækken, eller, om man vil, at
priskurven og nyttekurven løber parallel og har følgelig samme form“;
fejlen skyldes den urigtige forudsætning, at pengenes grænsenytte er kon-
stant De to østrigske økonomer Auspitz og Lieben2) begaar samme
fejl; de giver følgende udvikling af overgangen fra nyttekurve til
efterspørgselskurve. Har man forholdet mellem x (varemængden) og
y (totalnytten), ni aa x + dx, hvor dx er en forøgelse af varemængden
med een enhed, svare til y 4- dy. Tilvæxten i varemængden dx giver
altsaa tilvæxten i totalnytten dy, den saakaldte grænsenytte, der er
aftagende for voxende x. Sættes nu grænsenytten lig prisen, maa den
købte mængde x have værdien xdy, hvorved man ni. a. o. har efter-
spørgselskurven (formen som i figur 4).
fejlen1) i denne udvikling ligger i sætningen, at grænsenytten er
lig prisen; prisen er ikke lig den enkelte vares grænsenytte, men lig
denne divideret med indtægtsgrænsenytten, hvilken sidste størrelse
ikke er konstant, men selv varierende med prisen.
Grænsenyttekurvens matematiske form kan maaske være den
§ 52,j. I det følgende citeres efter den engelske oversættelse: Researches into the
mathematical principles of the theory of wealth. New York 1897. — § 53,v Værdi-
lære. København 1902. — § 53,2. Untersuchungen über die Theorie des Preises. Leip-
zig 1889. — § 53,3. Jfr. polemikken mellem Walras og Auspitz og Lieben i Revue
d’économie politique 1890.