A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
n
302
THE THEORY OF SCREWS.
[283,
multiplying the equations severally by Pi,p2, ••• and adding, we get
å tp^ »i /Si = I y"'pv (A cos (yi) + ß2 cos (772 ) + ... + A cos (yf>))
= i y"'Pri cos (ßy)
= y"™^ (since pv is indefinitely large),
whence we proceed as before and we see that the theorem (iii) remains true,
even if pv or p^ or p^ be infinite.
If pa be zero, then in general cos aa> is zero. But in this case pa 4- cos am
becomes da the length of the perpendicular from the centre of gravity upon
a. Hence we have
7>i«i PM p^
da. da da
and the proof proceeds as before so that in this case also the theorem holds
good.
Finally, letpabe infinite, a> must then be of zero pitch and pass through
the centre of gravity and
å-po. = a>
We have
&>! = J cos(al), a>:! = | cos (a3), ®5 = cos (as), ...
so that the equations (i) become
i w" cos (ai) = y"^ + p"'pi,
I to’" cos (a3 ) = y"'y3 + p'"p3,
I co"' cos («5) = y"'y:, + p'"p6,
|<ow cos (ai) = y'"y-2 + p'"p2,
% a>" cos («3) = y"yi + p"pt>
l<o"' cos (as) = y"'y6 + p"'p6-
Multiplying these equations by + aßlt — aß2, + bß3, —bß3,... and adding,
we have
2 w'" [a (/Sj - ß.2) cos (ai) + b (ß3 - ß±) cos («3) + c (fis - ße) cos (as )] = y"'^ ■
Let a be the screw belonging to the reciprocal system on which there is
an impulsive wrench of intensity a'" due to the reactions when an impulsive
wrench is administered on Then we have
ßaßi = ; — ßaß,2 = ^'"^.2 + a"'a-.2,
whence
ßa (ß2 — ß.2~) cos (ai) = cos (£1) cos (ai) + a"' cos (ai) cos (al),
with similar expressions for the two other pairs, whence by addition
ß [a - &) cos (ai) + b (ß3 - /34) cos (as) + c (ß5 — ßß cos (a 5)} = cos (af),
for since a and <r are reciprocal and pa = 00 we must have cos (a<r) = 0.