A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
337]
and similarly,
VARIOUS EXERCISES.
365
—cos (y£) =------------cos (ßt;),
cos(8£) cos(yf) Wb/’
-,1 cos (a£) =------cos (yj?),
cos(yø v cos (a?;) v/ ’
whence we obtain
cos (af) cos (/S^) cos (7^) + cos (af) cos (/3f) cos (y?;) = 0,
for it is shown in § 283 that p^ cos (ap) or the other similar expressions can
never be zero.
336. Instantaneous Screw of Zero Pitch.
Let a be an instantaneous screw of zero pitch. Let two of the canonical
co-reciprocals lie on a, then the co-ordinates of a are
I, 1 0, 0, 0, 0.
The co-ordinates of the impulsive screw y are given by the formulae of
§ 326 which show that
n 2^0 2w„
Vi + % = 0; % + y4 =--------; + % = + .
6 6
We thus have
(«1 + a2) (ph + %) + (a3 + «4) (% + Tji) + (a5 + a6) (% + = 0,
which proves what we already knew, namely, that a and y are at right angles
(§ 293).
We also have
y» (% + %) + z„ (i?5 + - 0,
which proves the following theorem :
If the instantaneous screw have zero-pitch then the centre of gravity of
the body lies in the plane through the instantaneous screw and perpendicular
to the impulsive screw.
337. Calculation of a Pitch Quadric.
If a, ß, y be three instantaneous screws it is required to find with respect
to the principal axes through the centre of gravity, the equation to the pitch
quadric of the three-system which contains the three impulsive screws corre-
sponding respectively to a, ß, y. The co-ordinates of these screws are
expressed with reference to the six principal screws of inertia.
We make the following abbreviations:
A = a3 (a,2 - a22) + b3 (a32 - a,2) + c3 (a52 - a62),
B = a3 (ß^-ß.ß) + b3 (ß^ - ß*) + c3 (ß* - ßß
C=a3 (7? - 7/) + b3 (y33 - 7?) + cs (7.,2 - 7(j2);