A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
424 THE THEORY OF SCREWS. [388
Let p be the pitch of the screw on which the wrench thus represented
lies, and let x, y, z be the co-ordinates of any point on this screw. Then,
in the plane of Z the moments of the forces are xY -yX, and if to this be
added pX, the whole must equal II.
Thus we have the three equations, so well known in statics,
F =pX+yZ - zY,
G —pY + zX - xZ,
H—pZ + xY — yX.
The centrifugal acceleration on a point P is, of course, w2PH, where a> is
the angular velocity, and PH the perpendicular let fall on the axis. The
three components of this force are X', Y', Z', where
X' = a? sin 0 (x sin 0 - y cos Ö),
Y' = co2 cos 0 (y cos 0 — x sin 0),
Z' = a? (z — m sin 2$),
and the three moments are F', G', H', where
F' = a>2 sin 0 (yz sin 0 + xz cos 0 - 2my cos 0),
G' = ®2 cos 0 (- yz sin 0 - xz cos 0 + 2mx sin 0),
H'= w2 {(y2 - a?2) sin 0 cos 0 + xy cos 20}.
We are now to integrate these expressions over the entire mass, and we
employ the following abbreviations (§ 324):__
$xdm = Mx, ■ fydm = My,; jzdm = Mz0;
Ry2 ~ ®2) dm = (p2 - p2) M ;
fxydm = Mlf; fxzdm=Ml22; jyzdm=Ml2;
X = fX'dm; Y= JY'dm; Z = jZ'dm;
F = jF'dm; G = jG’dm; H = jH'dm;
then, omitting the factor Ma?, we have
X= + («0 sin 0 — y, cos 0) sin 0,
Y = - (x0 sin 0 - y0 cos 0) cos 0,
Z = z„ — m sin 20;
■^ = + sin 0 (l^ sin 0 + l22 cos 0) — 2my0 sin 0 cos 0,
G = — cos 0 (Zj2sin 0 + I2cos 0) + 2ma?0 sin 0 cos 0,
H = (p,2 - p32) sin 0 cos 0 + r2 cos 20.
We can easily verify that
FY - GX = 2mXY.