A Treatise on the Theory of Screws
Forfatter: Sir Robert Stawell Ball
År: 1900
Forlag: The University Press
Sted: Cambride
Sider: 544
UDK: 531.1
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
388] THE THEORY OF PERMANENT SCREWS. 425
We now examine the points on the cylindroid intersected by the axis of
the screw
F =pX+yZ — zY,
G =pY+zX— xZ,
H = pZ + xY — yX.
We write the equations of the cylindroid in the form
« = jRcos</>; 7/= 72 sin </>; .? = m sin2</>;
then, eliminating p and R, and making
U=X* + P +Z\
V = FX+ GY+HZ,
we find, after a few reductions,
tan3 <f>(YV-GU) + tan2 </> (XV-FU + 2mXU)
+ ta,n <f>(YV—GU— 2mYU) +XV — FU=0.
This cubic corresponds, of course, to the three generators of the cylindroid
which the ray intersects.
If we put
FY - GX = 2mXY,
then the cubic becomes, by eliminating m,
(Ftan </> + X) {X (YV - GU) tan*</> + (XV-FU) Fj = 0.
The factor Y tan <j) + X simply means that the restraining screw cuts the
instantaneous screw at right angles.
The two other screws in which y intersects the cylindroid are given by
the equation
(XYV - XGU) tan2 </> + (XYV- FUY) = 0.
These two screws are of equal pitch, and the value of the pitch is
P1 (X YV - XG U) +p2 (FUY-X YV)
U(FY-GX)
where p1 and p2 are the pitches of the two principal screws on the cylindroid.
After a few reductions the expression becomes
7 (Ip - XopJ sin 0 + (!■? + y0/>2) cos 0
U + x0 sin 0 — y0 cos 0
This is the pitch of the two equal pitch screws on the cylindroid which y
intersects. If y is to be reciprocal to the cylindroid, then, of course, the
pitch of y itself should be equal and opposite in value to this expression.
Hence the permanent screw on the cylindroid is given by
(Ip - xopi)sin 0 + (('2 + y0p2) cos 0—0.