Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
210
HARBOUR ENGINEERING.
, A+ D D 2A-D
and y FI 6 ’
whence we can obtain the equation for the locus, viz :—
36xy + 18Da: - 18Ly - LD =0,
which indicates a hyperbola.
Transfer the origin to xr yr Then
36(æ + x^y + yj + 18D(a; + x^ - 18L(y + y^ - LD = 0.
If the coefficients of x and y in this expression be made equal to zero, the
values of x^, corresponding thereto, will give the centre of the curve. Thus
36^+180=0,
and 36^— 18L=0.
Therefore ^i= - TV’
, L
and Xj=—•
Accordingly, the point N is the centre.
Referring the equation to N as origin, with NH and NP as axes, it becomes
K’+IX'' - y) * ““(**r) - “(» -<) - w-0‘
whence
^+|ld=0.
Therefore NH and NP are the asymptotes of the rectangular hyperbola
constituting the curve. Further, since
xy= ~yLD’
we see that the locus lies on the conjugale hyperbola.
If the transverse axis of a rectangular hyperbola be 2a, then
ixy = - 2a2
is the equation of the conjugate hyperbola.
This may be written
a2
Comparing it with the preceding value of xy, we see that
±=ÄLD;
2 9 ’
that is,
a=4 VLD-
Turning again to the general equation,
'i^xy + 18Da:- 18Ly - LD= 0,
it will be observed that the curve passes through the point ~ , —
G 6