116
Den endelige Analyse.
vinde de algebraiske Vanskeligheder, som kunde hidrøre
fra mere komplicerede Former af Ligningerne.
Det bliver derved forstaaeligt, at man den Gang,
da Opløsningen af Trediegradsligninger endelig fandtes,
lagde Hovedvægten paa de Regler, der tjene til at løse
de forskjellige Ligninger af Formen
x* ax b = 0,
som faas for forskjellige Fortegn for a og b. Reduk-
tionen af en Ligning med 4 Led til en saadan laa nemlig,
som vi saa, ikke fjernt for den Tids Mathematikere, om
end først Cardano som den, der i Ars magna foretog en
sammenhængende Behandling af Trediegradsligninger,
har opstillet almindelige Regler for denne Reduktion.
Løsningen af ovenstaaende trinome Ligning skyldte han
imidlertid Tartaglia’s Meddelelse og Scipio Ferro’s efter-
ladte Papirer.
De Meddelelser, som Cardano med saa megen Paa-
trængenhed fralokkede Tartaglia (S. 8), gik ud paa,
at naar vi nu ved a og b betegne positive Størrelser,
Ligningen
a?3 ax = b (1)
løses ved først at bestemme u og v saaledes, at
u — v — b, uv = ( --) ,
\3/
hvorved u og — v blive Rødder i en Ligning af anden
Grad, og dernæst sætte
x = y/u — y/v ;
og at Ligningen
x* = ax b (2)
løses ved
u v = b, uv =
a
.3
3
x = y/u \/v.