ForsideBøgerPocketbook of Useful Form…and Mechanical Engineers

Pocketbook of Useful Formulæ and Memoranda
for Civil and Mechanical Engineers

Forfatter: Guilford L. Molesworth

Sider: 744

UDK: 600 (093)

Søgning i bogen

Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.

Derved får du fremhævet ordene visuelt direkte på billedet af siden.

Download PDF

Digitaliseret bog

Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.

Side af 764 Forrige Næste
632 moleswokth’s pocket-book Differential and Integral Calculus— continued. yH 1 dxn = nxn~1dx; /x“dx =——r- n + 1 Simple Example of Maxima and Minima. , d u u is a minimum or maximum when — = 0. d x W In formula 8 = (L» - æ2) (see page 171); find the /joint at which the strain is a maximum. . W v is the same in all cases, and therefore a constant; 2DL substitute a for it; and u for S; or u = a L x — ax*; , du ,1 — 1 2 — 1 T „ then — = aLx — 2ax = aL - 2ax. d x Make (or a L — 2 a æ) = 0; dx s then 2 ax = -a L; or 2x = L; or x = -■; or the point of maximum or minimum value is at half the span. . „ . . u . When the second differential coefficient ——- is negative, ctæ’ u is a maximum; but if positive, u is a minimum. — 2 ax therefore w is a maximum. dx* Example of the Application of the Calculus to Qirdeks. In any girder (whether straight, curved, continuous, or dis- continuous) if the bending moment at any point be expressed as a function of a variable x, the normal shearing force at that point will be expressed by the differential coefficient of the function. Thus, if the bending moment at any point be expressed by M — W (2 ax - atf); the normal shearing force at that point will be = W (2 a — 2 x) — 2 W (a — æ). d <v