Side
af
764
Forrige
Næste
G89
OF ENG INKERING FOBMUI.Æ.
Hyperbolic Logarithms.
Calculated by LEWIS OLRICK, C.E.
The hyperbolic logarithm of a number is found
by multiplying the comm m logarithm of the
number by 2'302585052994.
Example:—The common logarithm of 7 is
0-8450980, which multiplied by 2-30258505 gives
1*9459100, the hyperbolic logarithm.
No. Logarithm No. Logarithm. 1 No. Logarithm. No. Logarithm.
roi •0099503 1'26 -2311116 1-51 •4121095 1-76 *5653138
1-02 •0198026 1-27 -2390169 1-52 -4187103 1-77 -5709795
1-03 ■0295588 1-28 -2468601 1-53 -4252676 1-78 -5766133
1-01 ■0392207 1-29 -2546422 1-54 -4317S25 1-79 -5822156
1-05 •0487902 1-30 ‘2023043 1-55 -43825,9 1*80 ’5877866
1'06 •0582690 1-31 -2700271 1-56 -4446858 1-81 -5933268
1-07 •0676586 1-32 -2776317 1-57 ‘4510756 1-82 -5988365
1-08 •0769610 1-33 -2851788 1-58 -4574249 1'83 -6043159
I *09 •0861777 1-34 -2926696 1-59 "4637339 1-84 -6097655
1-10 •0953102 1'35 ‘3001046 1’60 "4700030 1-85 -6151856
i-n •1043600 1’36 -3074847 1-61 -4T62341 1-86 -6205764
1-12 •113323(5 1’37 -3148108 1-62 -4824261 1’87 -6259384
1-13 •1222175 1-38 '3220335 1-63 ’4885801 1-88 -6312717
114 •1310284 1-39 -3293037 1-64 -4946961 1-89 -6365768
1-15 •1397618 1-40 -3364722 1-65 -5007752 1-90 -6418538
1-16 • 1484200 1-41 -3435897 1-66 -5068176 1-91 -6471033
1-17 •1570038 I--12 • 3506568 1-67, -5128237 1-92 -6523251
1-18 •1655144 1-J3 '357GT44 1-68 •5187938 1-93 ■6575200
1'19 •1739534 1-14 ‘3646431 1-69 -5247285 1-94 -6626879
1-20 •1823215 1-45 -3715635 1-70. -5306282 1-95 -6678294
1'21 ■1906204 L-46 -3784365 1-71 -5364933 196 ’6729445
1-22 ’1988508 1-47 -3852623 1-72 -5423242 1-97 *6780335
1-23 •2070141 L-48 -3920420 1-73 -5481214 1-98 -6830968
1-24 •2151113 1-49 -3987762 I • ’5538850 1-99 -6?81346
1-25 •2231435 1-50 •4054652 i i-75 -5596157 2-00 -6931472
2 Y