Hvorledes Mathematiken I Tiden Fra Platon Til Euklid Blev Rationel Videnskab

Forfatter: H.G. Zeuthen

År: 1917

Forlag: Bianco Lunos Bogtrykkeri

Sted: København

Sider: 181

UDK: 510

Søgning i bogen

Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.

Derved får du fremhævet ordene visuelt direkte på billedet af siden.

Download PDF

Digitaliseret bog

Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.

Side af 192 Forrige Næste
372 174 theses susceptibles de former, par composition, un systéme synthétique contenant å la fois les vérités connues qu’on avait commencé par analyser et des vérités nouvelles. C’est å un tel procédé que se rattache 1’usage du mot »éléments« (æroe/Efa). Aristote et Ménechme expliquent qu’une proposition (avec sa démonstration) est élément d une autre (et de sa démonstration) si la premiere sert å démontrer la seconde. Par 1 analyse on résout done successivement les théorémes ou problémes dans leurs éléments jusqu aux derniers, seion Ménechme jusqu’aux postulats. On trouve ainsi des éléments dont on peut composer par l’opération inverse l’exposé synthétique de toute la théorie, ce qu a fait Euclide. D autre part ses 13 livres s’appellent aussi »Éléments«, å savoir ceux des théories ultérieures qu’on va en composer. De meme Apollonius appelle les quatre premiers livres de ses »Coniques« les élé- ments de la théorie de ces courbes. Ayant un but scientifique, de tels »Éléments« doivent satisfaire les plus grandes exigences logiques: plus ils sont exacts et généraux plus les théo- ries ultérieures qu’on en forme posséderont les mémes qualités. Chap. V. Sur les mathématiciens qui ont réalisé la réforme platonicienne. Dans son énumération des plus anciens mathématiciens grecs, Eudéme cite un assez grand nombre d’éléves de Platon, et la collaboration qu’il leur attribue doit avoir eu pour objet la réforme dont nous parions, ainsi que les formes, regardées par la postérité comme obligatoires, de (analyse et de la synthése. Quant au premier de ce nombre, Eudoxe, la question se pose de savoir si les grands progrés mathématiques qu’on lui doit n’ont pas servi, aussi bien que ceux de Théététe, å inspirer Platon, autant que de son coté il a été influence par les communications du grand philosophe. Quoi qu il en soit, son fameux postulat (Euclide V, Def. 4) — qu’å tort on å attribué å Archiméde — est un excellent exemple de 1 analyse dont nous avons parlé; nous y reviendrons dans le Chap. XI. Proclus a conservé plusieurs contributions de Ménechme å la constitution d »Éléments« satisfaisant les idées de Platon. Nous avons rappelé sa mention des postulats, et une discus- sion qu’il a eue avec le philosophe Speusippe porte å croire qu’il faut lui attribuer 1 idée de se servir, comme le fait Euclide, de ces hypotheses d’existence pour démontrer par les cons- tructions dans les »problémes« l’existence des figures composées, — avant den démontrer les propriétés dans les »théorémes«; il a méme commencé la réalisation dun tel projet par les mémes deux problémes qui servent å Euclide d’introduction å son systéme (I, 1 et 2). On retrouve une idée semblable, dans la célébre découverte de Ménechme, que les courbes, z/2 = bx et xy — ab, qui servent å la construction des deux moyennes géométriques entre a et b, sont des sections coniques. Cette constatation sert, en effet, å établir l’existence des deux courbes, celle du cercle étant déjå postulée. Ménechme parvient du reste aux dits résultats par une analyse suivie d’une synthése qui a plus tard servi de modele des formes utiles de ces deux operations. De meme, une demonstration de son frere Dinostrate