Fortsættelse out CentralKraefterne. gox
Kraften , da seer man, at denne Kraft bliver saa sior som , og
selgelig, at Central-Kræfterne altid ere som de Cirklers Diametrer lige
frem, i hvilke Bevægelsen steer, og som Quadraterne af Tiderne,
i hvilke Periphenerne igiennemlsbeö, sorkeert tagne.
§. 14L
Ved Hielp af denne nye Værdie, fom saakedes er funden for Af Omlobs-Ti-
Central-Kræfterne, kan man altid af de givne Tiders Beskaffenhed Q>n(vah Kræh
bestemme disse Kræfter, og omvendt igien af Kmflerne Tiden; mentWK*
da vi allerede have vrist en anden Maade for detts, vttle vi alene op-
holde os ved det fsrste,
Ferfte Tilfælde. Cre Tiderne fom Diametrerne, da blive
AB AB i
Central-Kræfterne fom > §.140, fom . eller fom Dia-
metrerne forkeert.
Anden Tilfælde. Ere Tiderne fom Quadraterne af Diame-
AB AB i
trerne, da bliver Central,Krcrsterne =^ = 774=773, eller
' A Au v
forkeert, som Cubi af Diametrerne.
Tredie Tilfælde. Ere Tiderne fom Quadrat-Rodderne asDra-
AB AB
metrerne, da er Central-Kraften ,p 1, der er, Central
Kraften er i denne Tilfalde altid bestandig.
§. 142.
Man kan paa denne Maade altid oplese lige saa mange deslige Hvad der for-
Spsrsmaal, som man felv vil; os er det nok at have viist Maaden,^"^ red pen-
3>4> 3 ‘ fer