ForsideBøgerMeddelelser Fra Lærerne V…talt I Femaaret 1912-16

Meddelelser Fra Lærerne Ved Den Polytekniske Læreanstalt I Femaaret 1912-16

År: 1917

Forlag: Trykt hos J. Jørgensen & Co. (Ivar Jantzen)

Sted: København

Sider: 663

UDK: 378.9 Pol

Særtryk Af Afhandlinger I Ingeniøren Og Teknisk Tidsskrift Samt Fortegnelse Over Andre Arbejder

Søgning i bogen

Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.

Derved får du fremhævet ordene visuelt direkte på billedet af siden.

Download PDF

Digitaliseret bog

Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.

Side af 672 Forrige Næste
I 00 CM I virker Prisen, altsaa for at Tværsnittet er det billig- ste, bliver: b ■ Pb + Idy. ■ Pf = -—- • dp • Pj^. fy ' P eller Indføres disse Priser, bliver Formlen : l/lOOM 1413 /100M 56,5 (2) Z fy 25b + 450 | / fy ' 6 + 18 _ i /IOOM Pj M 1 sj ’ bPb +2Pf Denne Formel giver som en simpel Funktion al' luller bekendte Størrelser**). Sættes Prisen for Jernet til 18 Øre pr. kg (heri (5 Øre til Arbejdsløn), bliver P,■= 18 •—— — J ’’ J 1 000 000 0,1413 Øre pr. cm3. Sættes Prisen for Betonen (1:2:3) til 25 Kr. pr. m3 (heri 7‘/2 Kr. lil Arbejdsløn), bliver P6=2500 • () 00*^5 (z)rc or cin^ 1 000 000 1”- Sæltes Prisen for Forskallingen (l‘/4" ru Bræd- der) lil 2,25 Kr. pr. m2 (heri 1,15 Kr. lil Arbejdsløn), bliver Pr = 225 • = 0,0225 Øre pr. cm2. Bræd- derne er da kun regnet brugt een Gang, og der er intet regnet Lil Afstivning, idet dennes Pris næppe paavirkes af Bjælkehøjden. I *■) Venstre Side af denne Ligning er ikke det nøjagtige Udtryk for Tværsnittets Fordyrelse, thi det er paa dette Sted, at der er gjort Brug af den kun tilnærmelsesvis rigtige Anta- gelse, at n er uafhængig af Jernprocenteir tp. Naar p for- ges og /' formindskes, vil Trykcentret nemlig rykke en Ube- tydelighed højere op i Pladen, saaledes at det til df sva- rende rfn i Virkeligheden er en Sum af denne lille Opryk- ning og af Bjælkekroppens Forhøjelse ; i Ligningens venstre Side burde derfor strengt taget dyt ombyttes med du minus den nævnte lille Størrelse; Berettigelsen til at sætte denne lig Nul vil fremgås af det følgende. **) Sættes Forskallingsprisen lig Nul, er det ensbetydende med. at der ingen Sidebegrænsning er for Betonen, og Formlen gælder da ogsaa for Plader. Vi vil nu sammenligne den med Ingeniør Mogensens Formel for at se, hvor stor Indfly- delse det i værste Fald kan have, at jj er regnet uafhængig af .Jernprocenten <|>. Med Pj = 0,15 og Pb = 0,0025 finder Mogensen ved Løs- ning af en tredje Grads Ligning, at den billigste Plade er ! ai\ 50 15 den, for hvilken Y = —I ei’ 16,4; hertil svarer <p ---------- ' \ ab) Y Y+15 x 3—S = 1,456, ß = — = 0,478, jx = _ . /i = 0,842/1 = 0,842.(Y + 15) ' 6y ■ JflOO S/. 15(3r+30) 2 I Ved at indsætte de samme Priser samt b — 100 cm i min Eksempel 1. En Bjælke med et 10 cm tykt og 2 m bredt Hoved skal optage Momentet 90 000 kgm. Bjælken ligger i en 1 Sten tyk Mur og skal have dennes Bredde (23 cm). De tilladte Spændinger er 40 og 1000. Find den billigste Højde*). . 1/9ÖÖ0ÖÖÖ “56Ï2- , r orinlen Hiver u = /-------- ’ =1112 cm ” 1 !000 23 + 18 111’zcin> P1 e 9 000 000 lolseng bliver f =----------= 81 cm2 Da Trykkraften i Hovedet er 81000 kg, vil den, ensfor- mig fordelt over dette, give Spændingen 10 * 200 40,5 at; Kantspændingen vil altsaa overskride den tilladte, og man kan ikke bruge den billigste Højde, men maa dimensionere Bjælken alene paa Grundlag af de tilladte Spændinger. Havde Momentet kun været 9000 kgm, vikle man have fundel (i = 35,2, /= 25,6 cm2. Da Trykcentret aldrig kan synke ned under Pladens Midte, er man paa den sikre Side ved at sælle h = 35,2 + -L° = 40,2. For dette Tværsnit giver de almindelige Formler: II — .Cl 900 000 25,6 • 36,7 = 959 og c* = 23,2. u er altsaa blevet 1,5 cm for stor, og <5, derfor noget lille, men ændres h til 40,2 — 1,5 = 38,7 cm, vil det passe. 2. Bjælkebredden vokser med Højden. Det Tilfælde, at Bjælkebredden paa Forhaand er givel, foreligger kun sjældent; som Regel maa den afpasses efter Højden; i beboede Rum vil man næppe faa Lov at gøre Bjælkebredden mindre end 3/4 Gange den synlige Bjælkehøjde (Fig. 2), og selv i Fabriksbygninger vil man ikke holde af at se paa Bjælker, hvis Bredde er under Halvdelen af Højden (Fig. 1). Hvad enten man nu vil gaa mere eller mindre vidt i Retning af smalle Bjælker, kan man gaa ud fra den Forudsætning, at Bredden skal vokse proportionalt med den synlige Højde eller, hvad Formel faas n = 7,75 altsaa knapt 2 % større. Hvis man omvendt gaar ud fra denne Værdi af n, findes de til- hørende Værdier y = 16,8 og <p = 1,41. *) Vi løser Opgaven ud fra Jernbeton-Entreprenørens Stand- punkt; vil vi finde den for Bygherren billigste Konstruktion, maa der i Formlen i Stedet for Betonprisen indføres For- skellen mellem denne og Murværkets Pris.