Meddelelser Fra Lærerne Ved Den Polytekniske Læreanstalt I Femaaret 1917-21
År: 1922
Forlag: Trykt hos J. Jørgensen & Co. (Ivar jantzen)
Sted: København
Sider: 485
UDK: 378.9 Pol
Særtryk Af Afhandlinger I Ingeniøren Og Teknisk Tidsskrift Samt Fortegnelse Over Andre Arbejder
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
I
-30
I
som Buen selv, faar M" samme Værdi og samme For-
tegn, M" samme Værdi og modsat Fortegn i to symme-
triske Punkter, og heraf følger straks, at:
hvori for Kortheds Skyld er sat:
tag
ft.
C*9
II
d’H
w I =.
i &
+
o 5
&
5’
>s
+
15
m «=
o
'-G
3 b I,
E~ 2 f It
o"
II
■•/i
og
M0Md ■ fjf" (— x cos cp — z sin <p)
EI as—\ — ds
II
5
II
I c’*’
I?
^1
(10)
(11)
EI2
M" (— x sin <p + z cos <p)
—ds = O,
G lp
kan (8) skrives:
Uf
e«
SAP
<n
c*
UJ*
MT O
£
G
c«
I
II
5: o
§•
II
fe:
5 !■
-€
C/>
fM" (— cos <p) ds
GIp
Venstre Sider i Elasticitetsligningerne kan uden videre |
tages fra Lign. (196)—(19/') i forr. Art., og hvis vi her
gik ud fra (5), kunde ogsaa de udregnede Størrelser i
(23Z>)—(23/’) i forr. Art. umiddelbart overføres. Med y\
udtrykt ved (6) kommer man til lidt andre Værdier, j
men de beregnes ganske som før, og vi indskrænkeri
os derfor til at angive Resultaterne nedenfor. Ligesom
i forr. Art. forudsætter vi, at
S- 5r Sr
: 7 i
CO 1 w
-2, 4“ +
C3 vir nr ur
Ï ] I 1
VT vvr
-
*r o 1 ur ©
y -I Cl •- -- »
sxr à vir
&- I £ i
5/3 c
O (JØ .= w
Ü
S. + i? +
•-H4 i—' r-t(CN
+ + + +
EZ2 = GZp; (7)
som tidligere vist maa dette for de Enkeltbuer, der alene
er Tale om her, betragtes som en meget god Tilnærmelse.
Heri kan 1ste Led, idet ifølge (11) p^^rf trækkes
sammen med Leddet med Faktor r i sidste Integral, og
man kommer saaledes til:
I Modsætning til tidligere faar vi her fra Belastnin-
gerne pt og p„ nogle Momenter M” og M" i Hoved-
systemet. I Punktet (Xj, z1,y1) bliver disse Momenter
(se Fig. 2):
jtf” = {l2 cos cpj • A + I fl sin <p] • B,
og paa samme Maade :
M1.
hvor
1 sin <Pi ■ A — ^fl cos cp! ■ B,
hvor :
A — r.4r + S-^s — lAt, J
B — rBr + sBs — IBt, J
Vir
SAP
T
h
s-vr
T5
MJ*
I
uæ
I
MT O
ÎU
CO
II
© JYt
>—k
—|— JYS
o I
I
rvt
to
CL
<rn
■s
wr
i)
VkJ'
CÜ
7 +
r
TI
uæ
I
ur o
II
SAT
UJ*
■*1 fXi
Pi sin çpj (y — yj dx— pvdx-p',
o J o
O-
a
©
V
H
ti
£
t/3
o
c
-----à
+
II
Ö o
s
— S, In-
1
C
+
cn
—
i_____
p' = — (x — Xj) cos cp! — (z — Zj) sin cpj, |
q' — + (x — Xj) sin cp, — (z — zj coscpp )
skal indføres Værdien af pv efter (1) og
efter (2), (3) og (4). Idet man efter disse Lig
•EL
af Æ’
(12)
(13)
CO
3^
te te te
11 . 11 + I'
i" ° S” ô Ï«
t :—
>- t a _
I -
■in
to
s i
TO
11 £•?
■in
M W
I
•- tø
Heri
yu og h
ninger har:
------T+^ i
X3Wj(1_^3+e(1~^ + i
_ i
2EI‘ A^Kl-S^+ed-E»)«)
3EIp k falle Størrelserne Ar,A, ■■■■Bl er rene Talværdier.
L -
\A (i
t£<
a.
.m
II
i"
d+
F
JAA
»- to
3*
s •
- b5
JYt
LS
éî^|
SAP
I
▼H
ur
UJ‘
I -, -
w UT I1AÏ
+ +l I
XI c
<N
Vkf « -«'
I
I I
rL ’ r1
® I
g
Sri) f
I +