Bestemmelse Af Spændinger I Plader Ved Anvendelse Af Differensligninger
Forfatter: N. J. Nielsen
År: 1920
Forlag: G. E. C. Gad
Sted: København
UDK: 061.6(043)
Søgning i bogen
Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.
Derved får du fremhævet ordene visuelt direkte på billedet af siden.
Digitaliseret bog
Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.
§ 22.
146
inen til Gengæld vil der i Hjørnerne som Reaktioner optræde de angivne
Enkeltkræfter.
Til Sammenligning beregnes Nedbøjninger, bøjende Momenter og
Reaktioner for en Plade med b = 00, u = 0,3, ensformig fordelt Belast-
ning P, Spændvidde l og X =1l (Fig. 60).
For et Punkt i Linie 1 bliver Lign. (16)
—22, + Z,=(1-UsDX
og Lign. (15)
Fig. 60- —2z, + "•> = Z,,
og tor et Punkt i Linie 2 bliver Lign. (16)
1 3)27 Og Lign. (15) 5-:=2,
Heraf lindes
FI = 5 (1 - U2) DX = *.091
EI 825 EI
5, = 8 » » — 8 , ,
2 9 625 * » .
Resultaterne er angivet i nedenstaaende Tabel.
Punkt — 0 1 2
Nedbøjninger 0 0,00728 0,01165 pi El
Momenter Mx 0 +0,0800 +0,1200 pl=
Momenter M 0 +0,0240 +0,0360 pl=
• Reaktion 0,5 pi
For en Plade med u = 0 faas
Punkt 0 *1 2
Nedbøjninger 0 0,00800 0,01280 ph
EI
Momenter Mx 0 +0,0800 +0,1200 pl
Reaktion 0,5 pi
Samme Værdier faas for en Bjælke, naar I betegner Bjælkens Inerti-
moment, P Belastningen pr. Længdeenhed og Mx det bøjende Moment i
Bjælken.