ForsideBøgerA Treatise On The Princip…ice Of Dock Engineering

A Treatise On The Principles And Practice Of Dock Engineering

Forfatter: Brysson Cunningham

År: 1904

Forlag: Charles Griffin & Company

Sted: London

Sider: 784

UDK: Vandbygningssamlingen 340.18

With 34 Folding-Plates and 468 Illustrations in the Text

Søgning i bogen

Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.

Derved får du fremhævet ordene visuelt direkte på billedet af siden.

Download PDF

Digitaliseret bog

Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.

Side af 784 Forrige Næste
164 DOCK ENGINEERING. however, to give a succinct description of the method by which the general formula is evolved. In fig. 87, let the angle NOM ( = p) represent the limiting angle of repose, and the semicircle N2 N N0, the locus of the point N, as in fig. 85. Through O draw the line OX Y, making the angle M OY = a, the obliquity of the conjugate pressures, and cutting the semicircle in X and Y. Then the limits of the ratio of the intensities of the conjugate pressures are OX ,0Y OY and OX’ The angle a may have any value between zéro and p. In the former limit, which is the case when the conjugate pressures are perpendicular to each other, and become principal stresses, 0 X Y coineides with O N2 N0 and 9 -A- ( - I -sni p\ .s the mjnimum value of -. When the obliquity is 0 N0 ( 1 + sin p) q the greatest possible, such that a = p, the points N2 and N0 coalesce in N, and the limit of the ratio of the conjugale pressures becomes unity. For any intermediate position in which a = X O M, the limiting ratio (^ of the conjugale pressures may be determined as follows :—Draw S M perpendicular to X Y, and join M X, M Y, each line making the angle ô with X Y. p' OX_OS-XS_| (q+p) cos a-^(q-p) cos ô en q' OY OS+YS J (q+p) cos a+J (q-p) cos 6 q+P cos a - cos 0 = q-p q+p A -— - cos a + cos Ô q-P • (14> Now, • A 1 (q+p) • sin ^= — — sin a, i (q-p .•. cos Ô= sin- a And as sin p= ^(q-p) i (q+p)’ COS 0= l2 sin2 p - (q+p)2 sin2 a (q - P)2 —L^!L ^gjn2 0_ gin2 œ q-p =-^ Jcos- a - cos2 p. q-p