ForsideBøgerA Treatise On The Princip…ice Of Dock Engineering

A Treatise On The Principles And Practice Of Dock Engineering

Forfatter: Brysson Cunningham

År: 1904

Forlag: Charles Griffin & Company

Sted: London

Sider: 784

UDK: Vandbygningssamlingen 340.18

With 34 Folding-Plates and 468 Illustrations in the Text

Søgning i bogen

Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.

Derved får du fremhævet ordene visuelt direkte på billedet af siden.

Download PDF

Digitaliseret bog

Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.

Side af 784 Forrige Næste
CHAUDY’S THEOREM. 169 it exercises its greatest effect. He proceeds to do this by resolving the pressure, Q (fig. 92), into its component parts, Q sin 7, and Q cos 7, along, and perpendicular to, the direction of the oblique thrust, assumed to make an angle, 7, with the horizontal, and, in this way, he determines the amount of the oblique pressure as P = Q sin 7 - Q cos y tan p = Q sin y (1 - tan p\ tan y)’ (27) the last term being the deduction due to friction. Considering, now, an element, x, of the surface, A 0, as undergoing an intensity of pressure, q, and noting that y, the corresponding element of the surface exposed to the oblique intensity, p, is as sin y, we can derive from the above equation— py = px sin y = yæ sin y 1 1 - whence, tan p\ tan y/’ tan p' tan y, (28) which gives the relative intensities of the two pressures. Applying this to the case of a retaining wall, A B C F (fig. 93), we see that the vertical force for each element of surface is the weight of a strip of earth, wxa, and, therefore, that P = wxSasa x sin y tan p' tan y. = area F CE x w sin y( 1 - tan p tan y. Now, the area F OE = JFG.CE, in which FG = F C cos (y- ß) — à sec ß cos (y - ß), and CE = À cosec y; ^2 . • . the area F 0 Ê = — cosec y sec ß cos (y — ß), and P = ^ . sec ß cos(y-ß)^1 - ^^y • (29) When the back of the wall is vertical, ß = 0, and the equation simplifies into wh2 P = — ^— cos y tan p\ tan y/’ (30) To determine the value of y, which will give the maximum value to the •equation, differentiate the variable factors, as before, and equate to zéro : — d cos 1 - dy tan p' tan y.