ForsideBøgerA Treatise On The Princip…ice Of Dock Engineering

A Treatise On The Principles And Practice Of Dock Engineering

Forfatter: Brysson Cunningham

År: 1904

Forlag: Charles Griffin & Company

Sted: London

Sider: 784

UDK: Vandbygningssamlingen 340.18

With 34 Folding-Plates and 468 Illustrations in the Text

Søgning i bogen

Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.

Derved får du fremhævet ordene visuelt direkte på billedet af siden.

Download PDF

Digitaliseret bog

Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.

Side af 784 Forrige Næste
A CONTINUOUS BEAM. 421 Next, let us consider the span, 6, as a whole, and take moments about the points B and C respectively. In the first case, we have So& - W^ + Mb = 0, .........................(115) and in the second, S^ _ W(6 - dj) - MB = 0.................................(116) Substitute the values for Sx and Sc given by these equations in (113) and (114), re-arranging as below— EI[Ødj - a (6 - dj)J = Mb|(5 -3dj- W^(6 - dj) (6 - 2dj). EI(/8+a)=-MBJ +W^(6 - dj). . (117) Multiply the latter equation by (6 - dj) and eliminate a by addition— EI/36=-MbJ +WJ(è-dj) (2&-dj). . (118) Now, let us deal in a similar manner with the span, q, to the left of the point, B. It is only necessary to re-write the previous equation, making the requisite changes in sign— - EI/3q= - MB^ +W^(q-d2) (2q-d2). (119) Whence, eliminating ß between the two equations, we get 1 )Wjdj(6 - dj) (26 - dj) W2d2(a - d2) (2 q - d2) ) Ms = 2(^6)1 6 + * an expression which furnishes us with the value of the bending moment at the intermediate support, B. The bending moment at each end is, of course, zero. It is sufficiently obvious that, when there is a load on only one of the spans (as Wj on the span, 6) the bending moment at the intermediate support is given by M - 1 ! W ^<& ~ ^^ .... (121) B 2 (q + 6)l 1 6 J and that, for any system of concentrated loads on a single span, the general equation may be written— Ma = o * -^{Wd(6 - d)(26- d)}...........................(122) The reactions at the point of supports will be easily determined fiom a considération of the conditions of equilibrium in each span. Assuming one span to be loaded as above— ..................................... MB = R06-2Wd.......................(124)