ForsideBøgerBestemmelse Af Spændinger…se Af Differensligninger

Bestemmelse Af Spændinger I Plader Ved Anvendelse Af Differensligninger

Forfatter: N. J. Nielsen

År: 1920

Forlag: G. E. C. Gad

Sted: København

UDK: 061.6(043)

Søgning i bogen

Den bedste måde at søge i bogen er ved at downloade PDF'en og søge i den.

Derved får du fremhævet ordene visuelt direkte på billedet af siden.

Download PDF

Digitaliseret bog

Bogens tekst er maskinlæst, så der kan være en del fejl og mangler.

Side af 236 Forrige Næste
§ 6. 46 og Lign. (15) Dn-1 — 4D + Dn+11 a 9 2X2 +EW -(-187 d1-1 — 4d, + dn+1 ) , + en } For Elementet ved Punkt (d, 1) bliver Lign. (16) og Lign. (15) - 4D1 + D2 + Er , X2 = (1 — u2P c7 EI —4d1 +d,1 1 2 = D, + e I Følgende Tabel (Side 46—47) giver en samlet Oversigt over de for Ax = Ay = X udledede Ligninger. Plade med konstant Inerti- moment. Simpelt under- støttet eller fri langs Kanten. Ax — Ay = X. Punkt (c,0) 0 1 2 C +(3—2u—°) (3-21-13) +(-4 d (3-2u—p) +(2 - 2p) e +(-4p8°) ^-^(P-H^ Punkt (c, 1) 0 1 2 3 c (3-2u—p3) +(,3-4u-gp°) -(4-2u-2u3) +(-lp°) d +(2-p) -(6 - 2p) +(2-p) e + 1 =(1-L2)(P-R)EY 0 1 2 3 c +(2—2p) -(6-2u) +(2 — P) )2 = (1 — P3) P Er Punkt (d,1) d —(6 — 2p) + 18 — 8 + 1 e +(2 - H) — 8 + 2 /■ + 1 eller, naar Nedbøjningen J — 4D1 + D, langs Kanterne er Nul, 1+ER =(1—u9) P og1 =D. J ET et I